国际基因编辑科技发展报告
来源:全球技术地图
作者:贾晓峰 中国科学技术信息研究所
以特异性的改变遗传物质靶向基因序列为目标的基因编辑技术是近年生命科学领域最热门的研究领域之一。围绕基因编辑的相关领域研究和人物事件连续多年入选Nature国际科学事件和科学人物。
基因编辑是顺承基因测序、基因组功能研究之后对生命现象从观察性研究到操纵性研究的进一步深入。基因编辑技术的探索始于上世纪八十年代人类基因组计划,但真正引发学界高度关注并广泛应用是源于2010年后更为廉价、高效的CRISPR技术平台出现。近年,基因编辑技术的研究热度和应用领域得以迅速提升和拓展,相关进展主要表现在如下三方面,一是基因编辑技术本身的发展,持续衍生并产品化开发了更为精准、高效、低成本的基因编辑技术;二是基因编辑技术在干细胞、免疫细胞、基因筛查等生命科学基础研究领域的拓展应用,已成为一项重要基础性工具;三是基因编辑技术在疾病基因治疗中探索发展,为遗传病、肿瘤、眼科疾病等多种重大疾病的治疗提供了新的治疗路径。
与人类基因组计划由多国政府大力组织推进有所不同,作为颠覆性技术的基因编辑当前还面临较多的技术不确定性和伦理风险,主要国家对于基因编辑的战略计划还在监管探索和酝酿实施中。相对于国家较为保守的态度,学界和产业界在基因编辑技术的推进中显得更为积极。我国在《“十三五”国家科技创新规划》、《“十三五”生物技术创新专项规划》、《“十三五”生物产业发展规划》等一系列规划中明确布局了基因编辑技术的研发与应用。我国学者在基因编辑应用研究和基于基因编辑技术的疾病基因治疗中的探索研究方面位居世界前列,但我国在基因编辑技术本身的研究缺乏原创和突破性成果,也正是由于在基因编辑技术本身研发的薄弱,使得我国基因编辑产业界的发展也相对落后。
总体,基因编辑技术拉开了从遗传物质层面操纵生物和生命现象的序幕,未来对于国家竞争力、学界和产业界上均会有深刻的影响。
正 文
自上世纪中叶,随着现代生物技术的发展,科学界对于人类的探索逐渐从组织器官水平、细胞水平,逐渐深入到基因水平。以人类基因组计划为代表的大科学计划开启了人类基因时代的序幕,并逐渐推动科学研究从基因测序(基因读取)、基因组功能研究向基因操纵(转基因、基因编辑)的领域纵向发展。不同于传统转基因技术具有的外源基因随机插入等不可控的问题,基因编辑技术可以实现对基因组固有序列进行原位碱基水平的精确修饰,从而达到解析生命机制,了解疾病发生机制和治疗疾病的目的。基因编辑将为基础研究和转化医学带来革命性的变革,是下一代生物技术的核心,当前在生物医学、人口健康等领域发挥了重要的作用。
1.人类基因组计划开启基因时代的序幕
1983年和1984年,美国能源部(DOE)和国立卫生研究院(NIH)分别组织相关领域科学家研讨启动大规模人类基因组测序计划的可能性,人类基因组计划(HGP)的进入酝酿阶段。1987年HGP智库发表了《测定和绘制人类基因组图谱》的报告,宣布HGP进入具体实施阶段,标志着HGP计划的正式实施启动。1988年美国国会通过了DOE和NIH关于启动HGP的申请,两家主要资助者协议共同支持HGP,开展人类基因组测序研究并推动相关技术的发展。1993年,人类基因组遗传图谱制作完成,第一代荧光自动测序仪顺利问世,HGP进入真正的规模化数据获取阶段。2003年,HGP最终由美、英、法、德、日、中6国逾千名科学家参与,我国科学家承担了1%的测序任务。
HGP是测定人体染色体所包含的由20亿个碱基对组成的核苷酸序列,绘制人类基因组图谱,并且识别其载有的基因及序列,达到破译人类遗传信息的最终目的,HGP最终确定了组成人类基因组的基因约为25000个左右。HGP计划总体耗资高达30亿美元,但其创造了巨大和深远的经济价值和社会价值。
HGP是由政府主导和支持的,但同时也充分调动和协调了政府、社会、企业的综合力量。科研成果和技术研发又为企业注人了新的知识产权,也为企业发展提供了明确的方向。十几年来,HGP为美国社会创造了超过200倍的经济回报,超过30万个工作机会;同时也实现了美国在相关高科技领域的持续性主导,比如DNA测序、高端分子检测、生物信息、生物制药等领域。
2.功能基因组计划推动后基因组时代的发展
继HGP之后,进一步解析基因组功能及其与人体健康与疾病间关系的功能基因组计划陆续开展,后基因组时代逐渐开启。后基因组是利用结构基因组所提供的信息和产物,发展和利用新的实验手段,通过在基因组和系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究,是在基因组静态碱基序列弄清楚之后转入对基因组动态的生物学功能研究,研究内容包括基因组发现、基因表达分析及突变检测。
不同于HGP采用国际联合体的大科学计划的实施模式,后基因组时代的一系列相关功能基因组计划相对小规模和零散布局,主要由学界推动,其影响力远不如HGP。如2002年的“人类单倍体型图计划”(HapMap)将遗传多位点与特定疾病风险进行关联的功能基因组研究,由日本、英国、加拿大、中国、尼日利亚和美国科学家合作完成,目标是构建人类基因组中常见遗传多位点的目录,用于发现与疾病及个体治疗反应相关的多位点。2008年启动的中、英、美、德4国科学家共同承担的“国际千人基因组计划”,总测序任务是1200人,旨在绘制人类基因组遗传多态性图谱。2006年美欧联合启动“小鼠全基因敲除计划”主要目的是敲除小鼠基因组中2万个基因库中的每个基因,对基因组功能进行研究,基于小鼠基因与人类基因的高度同源性,从而推动人类基因组功能的研究的快速进展。
3.人类基因编辑计划处于酝酿之中,面临较大争议
自本世纪以来,政府、学界机构和企业持续开展大量的基因相关衍生的科研计划,并且逐渐深入,研究内容已经从最初的测序、功能基因组研究,逐渐深入到基因编写领域。但由于基因编辑存在大量的技术不可控性和伦理风险问题,作为大规模的国家计划仍面临较大的争议,至今尚未出现国家层面的科技战略和计划布局。但由于基因编辑技术本身突飞猛进的发展以及基因编辑的应用需求的急速提升、应用范围的迅速扩展,基因编辑/编写计划在学界已有广泛的讨论,在国家层面的基因编辑计划尚处于酝酿中,布局和出台或仅仅是时间的问题。
HGP计划重点是测定人类基因组的核苷酸序列,被称为人类基因组读取计划(HGP-Read),与之对应的基因编写计划(HGP-Write)已在学界逐渐酝酿产生。2016年6月Science期刊公布了学界酝酿提出的一项公共-私人计划:从头合成完整的人类基因组(Science,),即人类基因组编写计划(Human Genome Project-Write, HGP-write)。纽约大学合成生物学家Jef Boeke、哈佛医学院基因组科学家George Church和商业设计工作室欧特克研究中心未来学者Andrew Hessel是此项计划的主要倡议者。HGP-write计划的目的是开发降低DNA合成成本新技术,并致力于解决一系列人类健康的挑战,潜在的应用包括可移植人类器官、通过基因组重编辑进行抗病毒免疫、肿瘤基因组治疗,使用人细胞和器官加速高效疫苗和药物的生产。2016年拟从公共机构、私人机构、慈善机构和研究院所筹集1亿美元用于启动该计划。但由于基因合成和编辑技术的不可控性和伦理问题的较大争议,该计划还处于争议的阶段,人类基因组编写计划仍在进一步争议中。
2018年1月,美国NIH跨出了重要一步,发布报告称在未来6年内通过共同基金支持1.9亿美元资助基因组编辑研究,以解决基因编辑在疾病治疗中的一些技术问题,重点布局改善在患者体内运送基因组编辑工具的机制、开发新型或改进基因组编辑器、开发在动物和人类细胞中测试基因组编辑工具安全性和有效性的方法,以及组装可供科学界共享的基因组编辑工具包。
4.人类基因编辑的技术和伦理监管面临较大挑战
由于基因编辑技术的快速发展及其在生物医学研究领域的广泛应用的需求,急需技术和伦理监管的有效跟进,在最大范围控制所存在的技术和伦理风险的同时,推动技术的快速发展。科学的进步引发了对于人类基因组编辑的担忧,例如如何平衡潜在利益与意外伤害风险、如何规范基因组编辑的使用、如何尊重个人、国家和文化的不同视角,这些是否影响技术使用。在此方面,国际学界和各国政府都在高度关注和积极调整相关的监管措施。
(1)国际学界积极探索人类基因编辑的技术和伦理监管
2017年5月,JAMA发布美国科学院关于人类基因编辑的技术原则的报告“Toward ResponsibleHuman Genome Editing”(下文简称“报告”),从技术伦理的角度对该项新技术在基础实验室研究、体细胞的临床应用、生殖细胞临床应用方面提出了规范和监管建议。在基础实验室研究方面,报告指出基因组编辑的基础研究应在伦理规范和监管框架下进行的,包括地方和国家监督委员会,以确保实验室的安全和保护捐赠组织和细胞研究的人的利益。报告认为,涉及体细胞和生殖细胞的基础研究对于科学和医学的进步是至关重要的,并建议在现有的监管结构下继续这项研究。在体细胞的临床应用方面,报告认为在现有的监管框架下,在治疗或预防疾病或残疾方面,体细胞基因组编辑的临床试验应继续进行。但将基因组编辑用于修改身体性状和获得超能力方面的应用不应当被批准。在生殖细胞临床应用,报告认为对于任何生殖编辑行为应保持谨慎,但谨慎并不意味着禁止。该报告建议,生殖细胞编辑的临床试验可以允许,但只有经过更多的研究,以满足适当的风险/利益标准时才能授权这些试验。报告认为下列的遗传性的基因编辑可以被允许:①缺乏其他合理的选择②对令人信服地证明进行基因编辑可缓解严重疾病③只转化为在人群中普遍存在的基因变异,并且已知不存在副作用④风险和潜在的健康利益具备可靠的临床前和临床数据⑤临床试验中持续的严格的监督⑥长期多代后续综合计划⑦通过公众健康和社会福利和风险评估。
2017年10月,Cell Stem Cell发表联合署名的论述文章,综述了科学界对人类基因编辑尤其是可遗传的胚胎基因编辑发展的详细指导意见,同时阐述了人类胚胎基因编辑对于胚胎发育等基础研究的重要推动作用,以及国际学术合作对潜在临床应用的重要意义。并提出人类胚胎基因编辑技术可以有效推动人类胚胎发育学的研究,倡议对于人类胚胎研究的限制进一步合理放开,科学界将能够取得更大的成果,这些理解可能在未来几年对世界范围内的人类胚胎基因编辑研究提供新的思路和研究基础,并且提出通过国际合作推动人类胚胎基因编辑中所存在诸多问题的解决。
(2)世界主要国家政府积极构建人类基因编辑的政策框架
自本世纪以来,世界主要国家围绕人类基因编辑发布了一系列报告,制定了相关监管政策,初步构建了基因编辑政策框架。2016年1月22日,《Science》以《Editing policy to fit the genome?》概述了关于人类基因编辑的政策框架问题,初步汇总了美国、德国、中国、日本等国家关于基因组技术纲要和立法文件。
表1 主要国家基因编辑技术纲要和立法文件
国家 | 基因编辑相关监管文件 |
美国 | 国立卫生研究院《人类干细胞研究指南》(2009) 国立卫生研究院《关于重组或合成核酸分子的研究指南》(2013) 国立卫生研究院《人类胚胎基因编辑的NIH资助声明》(2015) 白宫科技政策办公室《关于基因组编辑的通知》(2015) |
德国 | 《干细胞法案(2008年修订)》 联邦医师公会《研究性克隆用于辅助治疗》(2006) 国家伦理委员会《干细胞研究——禁止克隆和人工生殖细胞治疗的挑战》(2014)、《克隆繁殖的目的以及生物医学克隆的目的(意见)》(2004) 研究基金会《人类干细胞的研究报告》(2001)、《人类胚胎干细胞的研究》(2003)、《德国干细胞研究——可能性及前景》(2006) 跨学科研究组织“基因技术报告”及柏林-Bradenburg人文科学家《德国基因治疗:跨学科调查——德国跨学科组织基因技术报告》(2012) |
中国 | 卫生部《人的体细胞疗法及基因治疗临床研究质控要点》(1993) 食品药品监督管理局《人类基因治疗研究和制剂质量控制指导原则》(2003) 科技部、卫生部《人类胚胎干细胞研究的伦理准则(2003)》 科技部和卫生部《人类胚胎干细胞研究指导方针(关于人类胚胎干细胞研究的伦理指导原则)》(2004) 卫生计生委、食品药品监督管理局《干细胞临床研究管理办法(试行)》(2013)、《干细胞制剂质量控制及临床前研究指导原则(试行)》(2013) 卫生计生委《干细胞临床应用办法(试行)》(2015) 卫生计生委、食品药品监督管理局《干细胞临床研究管理办法(试行)》(2015) |
日本 | 文部科学省和后生劳动省部长级会议通知《基因治疗临床研究指南》(2004) 社会人类遗传学会《基因检测指南》(2004) 基因治疗临床研究指南(2008年修订) 人类克隆技术控制法案(2014年修订) |
5.我国积极布局基因编辑相关领域研究
我国《“十三五”国家科技创新规划》、《“十三五”生物技术创新专项规划》、《“十三五”生物产业发展规划》、《“十三五”国家战略性新兴产业发展规划》等一系列规划中明确重点布局了基因编辑技术的研发与应用。《“十三五”国家科技创新规划》提出重点发展基因编辑技术等前沿共性技术和基因治疗等新型生物医药技术,并将基因编辑列为基础研究和前沿技术的战略性前瞻性重大科学问题和引领产业变革的颠覆性技术予以重点布局。《“十三五”生物技术创新专项规划》同样将新一代基因操作技术列为颠覆性技术,并重点支撑基因治疗等现代生物治疗技术领域发展。《“十三五”生物产业发展规划》和《“十三五”国家战略性新兴产业发展规划》重点布局基因治疗技术、高性能基因编辑设备、基于基因编辑技术的生物育种技术的研发,将基因编辑列为前沿核心技术,构建基因组编辑技术为依托的分子育种创新平台,建基因编辑技术体系,开发针对重大遗传性疾病、感染性疾病、恶性肿瘤等的基因治疗新技术,促进基于基因编辑研究的临床转化和产业化发展,并支持高端基因合成、基因编辑等专业技术服务机构。
基因编辑技术研究近些年有极大的突破,最新的基因编辑工具能够在几乎任何物种中实现精确的修饰,有核苷酸水平的精确度和较快的速度。
1. 典型基因编辑技术发展进程
自上世纪人类基因组计划以来,基因编辑就受到广泛关注,并衍生发展出了众多基因编辑技术,按照编辑原理可分为如下三类,①基于DNA内切酶实现基因组特定位点改造的基因编辑技术,是当前发展最为迅速,关注度和应用范围最为广泛的一类基因编辑技术,主要包括锌指核酸酶(ZFN)、转录激活因子样效应子(TELEN)和规律成簇的间隔短回文重复(CRISPR)等技术;②基于碱基互补配对能力和生物信息传递中心法则的信息组修饰技术实现基因组多点修饰的基因编辑技术,如CAGE和YOGE技术;③基于人工基因组设计合成的特定人工序列(LoxP位点等)实现基因组多位点的删除、倒置与重复等编辑技术。由于不同基因编辑技术的特点与其相对的不完美,使得众多学者在该领域不断探索。时至今日基因编辑技术的探索与改进仍是学界广为关注的研究热点。较为公认的是,相对一些小众的基因编辑技术,当前可以在哺乳动物细胞中近乎任意位点切割并引发编辑的大众型基因编辑技术主要有三类,分别为ZFN、TALEN以及CRISPR。
基因编辑的过程机制较为复杂、多样,但基于DNA内切酶实现基因组特定位点改造的基因编辑技术(ZFN、TALEN和CRISPR)总体的技术路径相似,效率和便利性也逐渐优化,因而被称为第一代、第二代、第三代基因编辑技术。不同技术的区别在于如何引入断裂,以及新序列靶定的难易程度。
(1)ZFN
锌指核酸酶(ZFN)出现20世纪90年代,该技术由锌指蛋白实现对DNA的识别,由核酸酶进行精准切割,是第一个使用定制DNA核酸内切酶的基因组编辑策略。ZFN是异源二聚体,其中每个亚基含有一个锌指结构域和一个FokI核酸内切酶结构域。FokI结构域必须二聚化才有活性,确保必须存在两个相邻的DNA结合事件才能实现双链断裂,从而增加了目标特异性。切割事件使得大部分基因组编辑得以实现,在双链断裂后,细胞通过NHEJ和HDR机制修复的过程中完成基因编辑。经过十几年的发展,ZFN已应用于多种模式动物实现了基因的修饰。2005年,ZFN还首次实现了对人类细胞基因的定点修饰。然而,ZFN的精确度要建立在庞大的锌指表达文库之上,从中筛选出锌指蛋白,耗时费力,成本也高,至今尚未大规模的应用。ZFN技术最早由Sangamo生物科学公司最早商业化并用来开发治疗产品。在科研方面,Sangamo授权给了Sigma-Aldrich。Sigma-Aldrich公司将ZFN技术商业化,推出CompoZr ZFN试剂技术平台。
(2)TELEN
2009年,研究人员发现植物病原体黄色单胞杆菌编码的转录激活因子效应物核酸酶(TALE, transcription activator like effectors)的氨基酸序列与基因组中的核酸序列有恒定的对应关系。TALEN是二聚的转录因子/核酸酶,由33至35个氨基酸模块构成,其中每个模块可靶定单个核苷酸。通过组装这些模块,可靶定目标序列。理论上TALENs可以实现对任意基因序列的编辑,原理与ZFN技术相似,虽然同样比较繁琐,但更为灵活,筛选、构建方面也要容易一些,成本也更低,但TALE可能引起机体免疫反应。当前TALEN基因编辑产品工具主要由Addgene、Dan Voytas实验室、Cellectis Bioresearch公司、Life Technologies公司等开发。
(3)CRISPR
伴随着对基因打靶技术深入的研究,2012年以来出现了CRISPR/Cas基因编辑系统。该系统主要根据细菌或是古细菌中对外源入侵分子防御系统改造而成,可通过蛋白质和RNA 的复合物对基因组中特定序列进行切割。在CRISPR/Cas9系统中,Cas核酸酶在DNA位点上产生双链断裂,而这一位点是由短的向导RNA决定的。与其他系统相同,断裂也通过NHEJ或HDR来修复。与ZFN和TALEN不同的是,CRISPR/Cas系统不是人造的,是细菌天然适应性免疫的一种形式。相比较ZFN和TALEN,CRISPR/Cas更为简单、价格低廉、易于编程且非常高效,但由于向导RNA序列比ZFN或TALEN所靶定的大部分序列更短,这意味着脱靶效应的几率更高,精确度也不及ZFN和TALEN,但近些年的研究已经极大程度降低脱靶的几率和提高精确度。
表2 CRISPR基因编辑技术的对比优劣势
基因编辑工具对比 | 优势 | 劣势 |
CRISPR Vs. ZFN & TELEN | 简单、廉价、效率高。 CRISPR设计简单,能轻松获得现成的CRISPR全基因组文库。 CRISPR切割效率更高,也增加了其在全基因组筛选和单个靶点编辑中的应用 CRISPR可用于静息细胞的基因编辑 | 精确度和特异度低,脱靶率较高。 CRISPR向导RNA序列比ZFN或TALEN所靶定的序列更短,这意味着脱靶效应的几率更高、精度更低 2015年12月,美国FDA批准了Sangamo的B型血友病治疗方案(SB-FIX),是在患者肝脏细胞的白蛋白基因位点中插入治疗基因,采用的是ZFN技术平台。Sangamo的ZFN平台对基因组所做的修饰在遗传上是稳定的。 ZFN有着较高的特异性和极低的脱靶修饰水平,在基因组指定的位点获得80%以上的编辑效率,且脱靶效应低于检测限,这种能力正是治疗性的基因编辑所需要的。 |
2. 2017年基因编辑技术进展
2017年度,基因编辑技术重要进展主要包括如下4个方面,一是研发出用于RNA编辑的CRISPR编辑工具,二是开发出新一代CRISPR基因编辑工具CRISPR/Cpf1,三是开发出基于CRISPR/Cas9的单条染色体敲除技术,四是CRISPR/Cas9精度和效率提升技术的研发。
(1)可靶向RNA编辑的CRISPR/Cas13工具
RNA编辑是基因编辑技术的一个重要的发展趋势,2016年以来逐渐受到学界关注。2017年度的重点研究进展聚焦Cas13a酶系统靶向和切割RNA的作用机制、开发出可用于哺乳动物细胞RNA编辑的CRISPR-Cas13a编辑工具并探索研发高通量RNA操纵的编辑工具CRISPR-Cas13b。
中科院研究揭示出VI型CRISPR-Cas13系统的Cas13a抵抗RNA噬菌体的作用机制,从结构上揭示了Cas13a切割RNA机制(Cell)。加州大学的研究论文更为全面的展示了RNA靶向CRISPR酶Cas13a的作用机制,描述了Cas13a酶如何产生功能性crRNAs,以及在靶标RNA识别之前,其催化活性如何被封闭,这将有助于解析细菌免疫系统,以及临床诊断治疗(NatStruct Mol Biol)。MIT的研究证实了Cas13a酶可以高效地切割哺乳动物细胞RNA靶标,并开发出可在哺乳动物细胞中发挥作用CRISPR-Cas13a的RNA编辑工具(Nature)。MIT和哈佛大学论文阐述了靶向RNA的CRISPR酶系统,发现了两个利用Cas13b酶的新型的RNA靶向CRISPR酶系统,可高通量地方式特异性地靶向操纵RNA(Mol Cell)。
(2)新一代CRISPR基因编辑工具CRISPR/Cpf1
与CRISPR/Cas9编辑系统相比,出现于2015年的CRISPR/Cpf1(也称作Cas12a)基因编辑系统具有更为高效、灵活和较高的精准度等特点。MIT张锋在Cell发表CRISPR/Cpf1的综述,介绍了Cpf1系统比Cas9的进一步优势:更为简单,Cas9需要2个RNA分子协助,Cpf1只需要一个RNA分子;更为灵活,Cpf1酶也比标准SpCas9要小,使得它更易于传送至细胞和组织内;更为精准,Cpf1系统切割产生黏性末端,便于新DNA序列插入,而Cas9复合物切割DNA时留下的“平端”在重新连接时往往会发生突变;更为高效,Cpf1切口远离识别位点,这意味着即便在切割位点靶基因突变,仍然可以进行再度切割,提供了多次机会来校正编辑。 2017年度CRISPR/Cpf1的研究进展聚焦在相关机制的进一步阐明。
上海生科院鉴定了Cpf1蛋白的DNA精确切割位点和切割特性,并开发出新的DNA无缝拼接方法(Nucleic Acids Res)。哥本哈根大学的研究从结构上揭示CRISPR-Cpf1的DNA靶向机制,阐述了Cpf1的分子剪刀让DNA解链并进行切割的分子机制,指出Cpf1的主要优势在于它的高度特异性和DNA切割方式的原理(Nature)。MIT张锋研究发现了扩展CRISPR/Cpf1的靶点选择范围的方法,指出突变AsCpf1和LbCpf1的方法可以扩大了靶点选择范围(Nat Biotechnol)。
(3)基于CRISPR/Cas9工具的单条染色体敲除技术
2017年学界开发出了基于CRISPR/Cas9工具的单条染色体敲除技术,进一步拓展了CRISPR/Cas9编辑工具的应用范围。澳大利达亚特莱特大学采用CRISPR/Cas9体外在41个位点切割Y染色体的着丝粒,可达到80%的Y染色体切割效率,在298个位点上切割Y染色体的长臂会导致95% Y染色体切割效率,实现了小鼠完整染色体的清除(Molecular Therapy)。上海生科院也开发出可选择性消除单条染色体的CRISPR/Cas9敲除工具,证明了CRISPR/Cas9可在细胞、胚胎或体内组织中选择性消除单条染色体(Genome Biol)。
(4)CRISPR/Cas9基因编辑工具效率和准确率提升技术
CRISPR/Cas9系统是最早,也是最为成熟的CRISPR基因编辑工具,应用也最为广泛,相关研究围绕进一步提升其精度、效率和降低脱靶效应上开发出一系列技术。
美国Broad研究院开发出测序辅助的基因编辑技术,可减少由人体遗传变异导致CRISPR/Cas9基因编辑系统精度的降低,提出通过采用全基因组测序预筛查和选择向导RNA构建更为有效和安全的CRISPR/Cas9基因编辑工具的技术路径(Nature Medicine)。更为安全的CRISPR基因编辑技术的研发。德州大学研究同步证实了测序辅助CRISPR编辑工具可通过检测CRISPR分子评估非CRISPR靶点的潜在相互作用DNA片段,可有效提高基因编辑的安全性(Cell)。
瑞典乌普萨拉大学开发出通过改进Cas9提升特异基因片段搜寻和剪切效率的技术,指出改进Cas9的PAM序列可改善Cas9打开DNA双螺旋搜索基因的位置和频率,加速Cas9发现靶序列降低副作用产生的目的(Science)。加州大学的研究证明修正Cas9REC3结构域可大幅降低CRISPR-Cas9的脱靶效应(Nature)。
霍普金斯大学发现了高效CRISPR/Cas9编辑的基因组规则,可有效提升基因编辑的成功率,研究指出线性DNA片段、最佳的同源臂长度(35nt)、适当的切割位点和供者DNA距离(小于30nt)可达到最高的基因编辑成功率(PNAS)。
哈佛大学和MIT研究开发出校正点突变的DNA/RNA碱基编辑器技术,将有效拓展基因编辑工具的应用范围。其中哈佛大学的研究提出了一种新的DNA编辑策略,在不切割整个DNA双螺旋的情况下通过解链DNA对点突变碱基实现编辑(Nature);而MIT张锋团队的研究是通过合成一种新的融合酶实现RNA碱基编辑(Science)。
三、基因编辑技术在生物医学研究中应用进展
基因编辑技术工具层面的突飞猛进的发展将快速推动基因编辑技术在生物医学研究中的广泛应用,对于生物医学研究产生重要的变革性的基础作用。2017年度的主要进展体现在,基因编辑技术已经在人胚胎细胞基因编辑、干细胞基因编辑、免疫细胞(T细胞)基因编辑、RNA检测、癌基因筛选、遗传筛查、药物靶点筛选和模式动物研究领域广泛应用,极大程度推进相应领域的变革性发展。
1.胚胎细胞基因编辑
虽然人类胚胎基因编辑面临较多的技术不确定性和较大的伦理争议,但学界已经涉足该领域的探索。俄勒冈卫生与科技大学的研究利用CRISPR/Cas9对活的人胚胎进行基因编辑,成功地校正导致心 脏病的MYBPC3基因突变(Nature)。中山大学利用改进型CRISPR/Cas9校正人胚胎导致β-地中海贫血的错误单核苷酸序列(Protein & Cell)。
2.干细胞基因编辑
最新的研究证据表明,干细胞基因编辑可以极大程度拓展干细胞的用于临床诊疗的可能。中科院利用基因编辑技术编辑干细胞,获得了具有对细胞衰老和致瘤性转化的双重抵抗作用的遗传增强“超级”干细胞,为干细胞治疗提供了可能的解决方案(CellRes)。
3.免疫细胞基因编辑
免疫细胞治疗是近两年生物医学领域重要的颠覆性技术领域。随着2017年诺华和Kite两款肿瘤免疫细胞治疗产品CAR-T(嵌合抗原受体T细胞免疫疗法)的上市,细胞治疗已成为继传统化学治疗、物理治疗和手术治疗之后的新一代治疗技术。然而,当前免疫细胞治疗仍存在诸多技术上的缺陷,而基因编辑技术将有效助力免疫细胞治疗的进程。最新的研究显示TALEN和CRISPR/Cas9均有效用于治疗性T细胞基因编辑,其中TALEN技术用于通用型CART细胞制备有望引领新一代CAR-T技术性变革(当前是自体CAR-T细胞治疗)。2017年,美国辉瑞与法国施维雅和Cellectis联合宣布,基于TALEN基因编辑技术的通用型CAR-T细胞疗法UCART19用于复发性/难治性急性淋巴细胞白血病(ALL)的治疗已进入临床试验阶段。与自体CAR-T相比该技术有无可比拟的优势。但同时,Cellectis的另一款通用型CAR-T临床试验UCART123的两项1期临床试验由于出现受试者死亡被FDA叫停,通用型CART研究依旧面临挑战。
虽然不如TALEN精度高,更为高效、廉价的CRISPR/Cas9基因编辑技术也成功用于抗癌T细胞的改造。斯隆凯特林癌症纪念中心利用CRISPR/Cas9成功构建强效CAR-T细胞,证实CRISPR/Cas9技术能够运送CAR基因到T细胞基因组中的特定位点上。这种精准的方法能够更强健地构建出CAR-T细胞,能够持续更长的时间地杀死肿瘤细胞(Nature)。英国卡迪夫大学利用CRISPR/Cas9基因组编辑技术对杀伤性T细胞(NK)进行进一步基因改造,将非癌症特异性受体替换为特异性癌细胞的受体,从而实现肿瘤的T细胞治疗(Blood)。
4.基于基因编辑技术的RNA检测
RNA检测是最为先进的分子生物学技术,基因编辑为RNA检测提供了更为精准的技术路径。哈佛大学和MIT开发出基于CRISPR/Cas13a基因编辑技术的的诊断技术平台,可检测任何RNA分子,灵敏度增加一百万倍(Science)。加利福尼亚大学开发出采用不同Cas13a样蛋白(10种Cas13a突变体)实现同时多个RNA分子检测的技术,为将来高通量RNA检测奠定基础(Mol Cell)。
5.基于基因编辑技术的癌基因、药物靶点筛选和遗传筛查
由于基因编辑技术有着精准的基因识别和靶向编辑的能力,因此基于基因编辑技术可以开发出高效用于癌基因筛查、药物靶点筛选和遗传筛查的技术平台。
虽然既往CRISPR基因编辑工具已经广泛用于癌基因筛选,但假阳性的问题使得筛选的精度大打折扣,哈佛大学和MIT最新的研究开发出一种用于校正CRISPR癌症基因筛选中假阳性的方法(CERES),CERES的计算方法可有效限制筛查中的假阳性结果,可对汇集的CRISPR筛选数据进行拷贝数效应校正,并且针对癌细胞的基因依赖性提供给一种客观的证据(NatGenet)。
在基于基因编辑技术的药物靶点筛选方面,最新的研究进展在于体内筛选技术和高通量的筛选技术。哈佛大学和MIT研究采用体内CRISPR-Cas9基因组编辑技术以筛选可增强PD-1检查点抑制剂的疗效的基因位点(Nature)。剑桥大学的研究证实了CRISPR-Cas9技术可以高效的筛选急性骨髓性白血病细胞中潜在的药物靶点基因(Nature)。
传统遗传筛查依赖于单纯的测序技术,精度和效率均较低,最新的研究将基因编辑与测序技术结合用于遗传筛查可大幅提升精度和效率。哈佛大学开发出基因编辑与侧学技术融合高效遗传筛查技术平台,实现了大规模的单细胞转录谱分析(Nature Method)。奥利地科学院的研究开发出CRISPR液滴测序(CROP-seq)技术,实现高通量RNA多种表型的检测(Nature Method)。
6.基因编辑技术用于模式动物构建
模式动物是生物医学研究领域最为重要的实验对象,基因编辑技术用于模式动物的研究可极大程度提高模式动物培育的效率。我国昆明大学用TALEN基因编辑技术成功构建食蟹猴Rett综合征神经发育性疾病模式动物,可为相关疾病的研究提供重要的动物模型(CELL)。
基因治疗是基于对细胞内基因修饰的策略来治疗各种疾病。单基因疾病是由于碱基突变引起,可通过恢复基因的表达水平实现疾病的治疗;而多基因疾病的治疗相对来说比较困难。
基因治疗是通过正常基因的导入弥补缺陷基因,传统技术手段采用病毒载体介导基因导入,其中逆转录病毒介导的基因治疗首先进入临床,之后慢病毒、腺病毒、腺相关病毒等也在基因治疗中予以应用。虽然诸如逆转录病毒一类的治疗载体可以将所需目的基因整合到基因组中,持久表达用以代替缺陷基因,但是逆转录病毒的整合具有随机性,存在较多的安全性问题。寻找特异、高效修复的基因打靶工具是基因治疗领域中核心瓶颈问题。而基因编辑技术的出现和应用为基因治疗提供有力的工具。
当前,基于基因编辑技术的基因治疗主要包括体外编辑回输体内和体内编辑两类。与传统基因治疗方法相比,基因编辑技术能在基因组水平上对DNA序列进行改造,从而修复遗传缺陷或者改变细胞功能,使得彻底治愈白血病、艾滋病和血友病等恶性疾病成为可能。
最新的研究显示,基于ZFN基因编辑技术的单基因遗传病的治疗已经进入人体临床试验阶段,CRISPR/Cas9基因编辑技术对特定基因组DNA的定位也逐渐更加精准,成本更加低廉,在遗传性疾病、眼科疾病、肿瘤、血液病等基因治疗中的应用逐渐广泛,逐渐成为其主流技术,并推动了基因治疗领域的快速发展。
1.基因编辑已进入人体临床试验阶段
既往基因编辑的疾病治疗的研究均在细胞和动物体内展开, 2017年度美国Sangamo 治疗公司(Sangamo Therapeutics)宣布针对部分单基因遗传病开展人体临床试验和体内基因编辑试验,标志着基因编辑已进入人体试验阶段。
Sangamo 治疗公司于2017年5月份招募血友病 B、赫勒综合征、亨特综合征患者,开展基因编辑临床试验。临床试验通过腺相关病毒(AAV)为载体的锌指核酸酶(ZFN)在人肝细胞中的白蛋白编码基因的靶位点上进行切割,随后这种基因的一种功能性拷贝通过同源重组而被整合到肝细胞的基因组中,从而进行治疗。11月份,Sangamo公司报道完成了针对亨特氏综合征的1例体内基因编辑治疗临床试验,治疗效果有待进一步观察。
2.基于CRISPR编辑技术的单基因遗传病治疗
在单基因遗传病基因治疗领域,最新的研究重点聚焦更为简单廉价的CRISPR编辑技术的应用。美国过敏与感染疾病研究所(NIAID)采用CRISPR-Cas9基因编辑技术通过体外靶向和修复源自X连锁慢性肉芽肿病患者体造血干细胞中的缺陷基因(CYBB),并将编辑后造血干细胞移植至体内实现这些经过修复的造血干细胞产生了功能正常的白细胞(Sc Trans Med)。德州大学使用CRISPR/Cpf1(另一种CRISPR基因编辑系统,Cpf1比Cas9酶小很多)基因编辑系统,在人类心肌细胞和动物模型中实现了杜氏肌营养不良突破基因的靶向和基因修复(Science Advances)。美国埃默里大学在亨丁顿舞蹈症模式小鼠中利用通过病毒载体运送的CRISPR/Cas9成功切除脑细胞mHTT基因的一部分,使得亨廷顿蛋白聚集物几乎消失了(JCI)。
3.基因编辑用于眼科疾病治疗
最新的研究围绕基于CRISPR基因编辑技术的遗传性视网膜病、视网膜黄斑变性、青光眼等眼科疾病治疗,并取得重要进展。
美国国立健康研究院采用腺病毒为载体的CRISPR/Cas9基因编辑系统,靶向敲除小鼠视网膜细胞Nrl基因,可有效缓解色素性视网膜炎视网膜退化(Nat Commun)。韩国基础科学研究所采用腺相关病毒携带CRISPR/Cas9在小鼠体内实现失明的基因修饰,成功治疗相关遗传性视网膜疾病(NatCommun);该机构的另外一项研究将CRISPR/Cas9复合物注射到湿性黄斑变性模式小鼠的眼睛中,对VEGF基因进行局部修饰,有效控制了网膜和巩膜之间形成新的血管的生成(GenomeRes)。MIT的研究同样证实了利用腺相关病毒(AAV)运送靶向VEGFR2基因的CRISPR/Cas9系统可成功地阻止视网膜中的血管生成的技术机制(Nat Commun)。爱荷华大学利用CRISPR/CAS9技术将突变的肌纤蛋白进行了敲除,有效缓解广角青光眼(PNAS)。
4.基因编辑探索用于艾滋病、肿瘤等疾病治疗
作为一种全新的治疗路径,除在单基因遗传病、眼科疾病等领域治疗研究外,最新的研究探索将基因编辑技术用于艾滋病、肿瘤、血液病等治疗领域,并取得初步进展。
北京大学通过CRISPR/Cas9靶向人胎儿肝脏造血干细胞CCR5基因发生突变,进而移植到小鼠体内后可阻断HIV感染(Molecular Therapy),研究提示基因编辑技术或可成为HIV治疗的全新路径。
在肿瘤和血液病治疗方面。匹兹堡大学开发出病毒递送CRISPR/Cas9靶向敲除融合基因突变DNA序列,并用癌细胞死亡基因替代,从而杀灭癌细胞(NatureBiotechnology)。纪念斯隆—凯特琳癌症采用CRISPR-Cas9技术构建了更有效的CAR-T细胞,显著提升肿瘤免疫治疗效果(Nature)。澳大利亚南威尔士大学探索利用CRISPR基因编辑技术将有益自然突变引入到血细胞中,有效扭转血液病,为镰状细胞性贫血和其他的血液疾病的基因治疗提供重要方法路径(Blood)。
基因编辑技术的快速发展催生了一系列技术的产品化,除了传统的基因和生物技术公司,如Sangamo生物科学公司、Sigma-Aldrich和Cellectis Bioresearch公司等,近些年出现了一批专注基因编辑的新的初创型科技企业,也受到了金融资本的关注(表3)。与此同时,基于基因编辑技术的疾病治疗方案的开发引起了众多知名企业的关注,诺华、辉瑞、Juno等通过投资等方式纷纷与基因治疗公司开展合作,以推动基因编辑技术在疾病治疗中的快速应用发展。我国在基因编辑方面尚未有商业化和产业化的公司,这与我国在基因编辑技术本身研发上缺少原创性的技术成果有关。
表3 世界主要基因编辑公司
公司 | 技术 | 成立时间 | 创始人 | 地点 | 在研项目 |
Poseida Therapeutics | CRISPR | 2015年 | George Church | 美国 | 多发性骨髓瘤、前列腺癌和β-地中海贫血的基因疗法 |
eGenesis | CRISPR | 2015年 | George Church | 美国 | 通过CRISPR / Cas9基因编辑技术研发可供人类器官移植使用的转基因猪。 |
Intellia Therapeutics | CRISPR | 2014年 | Jennifer Doudna | 美国 | 造血干细胞相关疾病的基因治疗、CART的基因编辑技术 |
Agenovir | CRISPR | 2014年 | Stephen Quake | 美国 | 病毒性疾病的基因治疗,包括HPV HBV EBV CMV HSV |
Editas Medicine | CRISPR | 2013年 | 张锋 | 美国 | 先天性黑朦病等基本的基因治疗 |
Crispr Therapeutics | CRISPR | 2013年 | Emmanuelle Charpentier | 瑞士 | 囊肿性肺纤维化、镰刀型贫血等疾病的基因治疗 |
Synthego | CRISPR | 2012年 | Paul Dabrowski, Michael Dabrowski | 美国 | CRISPR基因组编辑和研究设计的合成RNA组合 |
Caribou Bioscience | CRISPR | 2011年 | Jennifer Doudna | 美国 | 血液病、肿瘤等领域的基因编辑治疗技术 |
Precision Bioscience | ARCUS | 2006年 | Matthew Kane | 美国 | 基于ARCUS基因编辑技术的肿瘤免疫治疗中 |
Sangamo Therapeutics | ZFN | 1995年 | Philip Gregory | 美国 | 血友病、艾滋病、亨廷顿综合征、赫勒综合征等的基因治疗 |
当前,作为生命科学核心基础性技术的基因编辑技术已经初步成熟,并快速得到政府、学界和产业界广泛关注。虽然基因编辑技术有较多的技术不可控和安全及伦理风险问题,但由于基因编辑技术的本身的拓展性极为广泛,学界和产业界担任了技术推动的先锋,国家在技术监管和风险防控上面均保持高度的谨慎和持续的跟进。
在科技计划推进上,国际学界的基因编写计划2016年初漏端倪,而美国NIH直到2018年1月份才发布报告拟通过共同基金来支持基因编辑技术的研究与基因治疗中的应用。
未来,基因编辑技术所开启的生命体基因水平的操纵和研究的时代将快速来临,或许将从根本上为遗传性疾病、肿瘤等一系列重大疾病的治疗提供新的工具和路径。
一网打尽系列文章,请回复以下关键词查看: |
---|
创新发展:习近平 | 创新中国 | 创新创业 | 科技体制改革 | 科技创新政策 | 协同创新 | 科研管理 | 成果转化 | 新科技革命 | 基础研究 | 产学研 | 供给侧 |
热点专题:军民融合 | 民参军 | 工业4.0 | 商业航天 | 智库 | 国家重点研发计划 | 基金 | 装备采办 | 博士 | 摩尔定律 | 诺贝尔奖 | 国家实验室 | 国防工业 | 十三五 | 创新教育 | 军工百强 | 试验鉴定 | 影响因子 | 双一流 | 净评估 |
预见未来:预见2016 |预见2020 | 预见2025 | 预见2030 | 预见2035 | 预见2045 | 预见2050 |
前沿科技:颠覆性技术 | 生物 | 仿生 | 脑科学 | 精准医学 | 基因 | 基因编辑 | 虚拟现实 | 增强现实 | 纳米 | 人工智能 | 机器人 | 3D打印 | 4D打印 | 太赫兹 | 云计算 | 物联网 | 互联网+ | 大数据 | 石墨烯 | 能源 | 电池 | 量子 | 超材料 | 超级计算机 | 卫星 | 北斗 | 智能制造 | 不依赖GPS导航 | 通信 | 5G | MIT技术评论 | 航空发动机 | 可穿戴 | 氮化镓 | 隐身 | 半导体 | 脑机接口 | 传感器 |
先进武器:中国武器 | 无人机 | 轰炸机 | 预警机 | 运输机 | 直升机 | 战斗机 | 六代机 | 网络武器 | 激光武器 | 电磁炮 | 高超声速武器 | 反无人机 | 防空反导 | 潜航器 |
未来战争:未来战争 | 抵消战略 | 水下战 | 网络空间战 | 分布式杀伤 | 无人机蜂群 | 太空战 | 反卫星 |
领先国家:美国 | 俄罗斯 | 英国 | 德国 | 法国 | 日本 | 以色列 | 印度 |
前沿机构:战略能力办公室 | DARPA | 快响小组 | Gartner | 硅谷 | 谷歌 | 华为 | 阿里 | 俄先期研究基金会 | 军工百强 |
前沿人物:钱学森 | 马斯克 | 凯文凯利 | 任正非 | 马云 | 奥巴马 | 特朗普 |
专家专栏:黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 易本胜 | 李德毅 | 游光荣 | 刘亚威 | 赵文银 | 廖孟豪 | 谭铁牛 | 于川信 | 邬贺铨 |
全文收录:2018文章全收录 | 2017文章全收录 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录 |
其他主题系列陆续整理中,敬请期待…… |